Skip to content

Maxwell方程组的洛伦兹协变

电磁场张量

\[ F^{\mu \gamma}=\begin{pmatrix} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ -\frac{E_x}{c} & 0 & B_z & -B_y \\ -\frac{E_y}{c} & -B_z & 0 & B_x \\ -\frac{E_z}{c} & B_y & -B_x & 0 \\ \end{pmatrix} \]

同时存在与 \(F^{\mu \gamma}\)对偶的场张量 \(G^{\mu \gamma}\)

麦克斯韦方程的场张量形式

\[ \frac{\partial\boldsymbol{F}^{\mu \gamma}}{\partial{x^\gamma}}=\partial_\gamma \boldsymbol{F}^{\mu \gamma} = \mu_0J^\mu \]
\[ \frac{\partial\boldsymbol{G}^{\mu \gamma}}{\partial{x^\gamma}} = 0 \Leftrightarrow \sum_{\lambda, \mu, \gamma}\partial_\lambda \boldsymbol{F}_{\mu \gamma} \]

其中下标表示对\(\lambda, \mu, \gamma\)轮换求和;方程(2)和方程(3)分别对应两个 \(Maxwell\)方程

Lorentz协变性证明

\(\partial_\gamma \boldsymbol{F}^{\mu \gamma} = \mu_0J^\mu\) 协变证明

\[ \partial_\gamma \boldsymbol{F}^{\mu \gamma}=\partial_\gamma \Lambda_\lambda^\mu \Lambda_\sigma^\gamma\boldsymbol{F}^{\mu \gamma} \]

同时,可以通过链式法则证明,对于四维矢量的梯度\(\partial_\mu\)也满足Lorentz变化关系式,也就是\(\frac{\partial}{\partial x^\mu}\)本身构成一个四维矢量,因此可以对(4)继续做Lorentz变换:

\[ \partial_\gamma \boldsymbol{F}^{\mu \gamma}=\partial_\gamma \Lambda_\lambda^\mu \Lambda_\sigma^\gamma\boldsymbol{\bar{F}}^{\lambda \sigma}=\Lambda_\lambda^\mu \Lambda_\sigma^\gamma \Lambda_{\gamma}^\sigma \bar{\partial}_\sigma \boldsymbol{\bar{F}}^{\lambda \sigma}=\Lambda_\lambda^\mu (\Lambda_\sigma^\gamma \Lambda_{\gamma}^\sigma) \bar{\partial}_\sigma \boldsymbol{\bar{F}}^{\lambda \sigma} \]

括号中是一对正变换和逆变换:

\[ \Lambda_\sigma^\gamma \Lambda_{\gamma}^\sigma = 1 \]

因此:

\[ \partial_\gamma \boldsymbol{F}^{\mu \gamma}=\Lambda_\lambda^\mu \bar{\partial}_\sigma \boldsymbol{\bar{F}}^{\lambda \sigma} \]

等式两边同时乘上Lorentz逆变换矩阵:

\[ \Lambda_\mu^\lambda \partial_\gamma \boldsymbol{F}^{\mu \gamma}=\bar{\partial}_\sigma \boldsymbol{\bar{F}}^{\lambda \sigma} \]

利用(2)式:

\[ \Lambda_\mu^{\lambda}\mu_0J^\mu=\mu_0\bar{J}^\mu=\bar{\partial}_\sigma \boldsymbol{\bar{F}}^{\lambda \sigma} \]

\(\sum_{\lambda, \mu, \gamma}\partial_\lambda \boldsymbol{F}_{\mu \gamma}\)协变证明

\[ \partial_\lambda \boldsymbol{F}_{\mu \gamma}=\Lambda^\mu_\sigma\Lambda^\gamma_\rho\Lambda_\lambda^\kappa\bar{\partial}_\kappa \boldsymbol{\bar{F}}_{\sigma \rho} \]

对于剩下两个表达式,\(\Lambda^\mu_\sigma\Lambda^\gamma_\rho\Lambda_\lambda^\kappa\bar{\partial}_\kappa\)交换求和不变,因此:

$$ \sum_{\kappa, \sigma \rho}\bar{\partial}\kappa \boldsymbol{\bar{F}}=0 $$ 结合(9),(11),证明了Maxwell方程组具有Lorentz协变.